On the Integrability of Orthogonal Distributions in Poisson Manifolds

نویسندگان

  • Dan Fish
  • Serge Preston
چکیده

In this article we study conditions for the integrability of the distribution defined on a regular Poisson manifold as the orthogonal complement (with respect to a pseudo-Riemannian metric) to the tangent spaces of the leaves of a symplectic foliation. Examples of integrability and non-integrability of this distribution are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrability of Poisson Brackets

We show that various notions of integrability for Poisson brackets are all equivalent, and we give the precise obstructions to integrating Poisson manifolds. We describe the integration as a symplectic quotient, in the spirit of the Poisson sigma-model of Cattaneo and Felder. For regular Poisson manifolds we express the obstructions in terms of variations of symplectic areas. As an application ...

متن کامل

Integrability of Lie Brackets

In this paper we present the solution to a longstanding problem of differential geometry: Lie’s third theorem for Lie algebroids. We show that the integrability problem is controlled by two computable obstructions. As applications we derive, explain and improve the known integrability results, we establish integrability by local Lie groupoids, we clarify the smoothness of the Poisson sigma-mode...

متن کامل

Integrability of certain distributions associated to actions on manifolds and an introduction to Lie-algebraic control

Results are given on the integrability of certain distributions which arise from smoothly parametrized families of diffeomorphisms acting on manifolds. Applications to control problems and in particular to the problem of sampling are discussed.

متن کامل

Killing-Poisson tensors on Riemannian manifolds

We introduce a new class of Poisson structures on a Riemannian manifold. A Poisson structure in this class will be called a Killing-Poisson structure. The class of Killing-Poisson structures contains the class of symplectic structures, the class of Poisson structures studied in (Differential Geometry and its Applications, Vol. 20, Issue 3 (2004), 279–291) and the class of Poisson structures ind...

متن کامل

ar X iv : d g - ga / 9 40 70 09 v 1 2 0 Ju l 1 99 4 INTÉGRATION SYMPLECTIQUE DES VARIÉTÉS DE POISSON RÉGULIÈRES F . ALCALDE CUESTA

A symplectic integration of a Poisson manifold (M, Λ) is a symplectic groupoid (Γ, η) which realizes the given Poisson manifold, i.e. such that the space of units Γ0 with the induced Poisson structure Λ0 is isomorphic to (M, Λ). This notion was introduced by A. Weinstein in [28] in order to quantize Poisson manifolds by quantizing their symplectic integration. Any Poisson manifold can be integr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004